Prediction of Lung Nodule Characteristic Rating using Best Classifier Model
نویسندگان
چکیده
In this paper, we are exploring the response of individual classifier families on imbalanced medical data. In this work we are using LIDC (Lung Image Database Consortium) dataset, which is a very good example for imbalanced data. The main objective of this work is to examine how will be the response of different categories of classifier on imbalanced dataset. We are considering five categories of dataset which are grouped as, Instance Based classifier, Rule Based classifiers, Functional Classifier, Decision Tree classifier and Ensemble of Classifiers. The results from our experiments will be evaluated based on following performance metrics such as Accuracy, Precision, Recall, F-measure, Area under curve and kappa statistics.
منابع مشابه
Classifiers in Context: Prediction of Radiological Characteristic Ratings for Lung Nodule Malignancy
In this paper, we are exploring a panel of classifier response to an imbalanced medical data set. In this work we are using LIDC (Lung Image Database Consortium) dataset, which is a very good example for imbalanced data. The main objective of this work is to examine how the response of different categories of classifier is, when subjected to imbalanced dataset. We are considering five categorie...
متن کاملColor radiography in lung nodule detection and characterization: comparison with conventional gray scale radiography
BACKGROUND To compare the capability of lung nodule detection and characterization between dual-energy radiography with color-representation (DCR) and conventional gray scale chest radiography (GSR). METHODS A total of 130 paired chest radiographs (DCR and GSR) obtained from 65 patients (14 with normal scans and 51 with pulmonary nodules) were evaluated. After analysis, 45 non-calcified and 2...
متن کاملProposing an Intelligent Monitoring System for Early Prediction of Need for Intubation among COVID-19 Hospitalized Patients
Introduction: Predicting acute respiratory insufficiency due to coronavirus disease 2019 (COVID-19) can diminish the severe complications and mortality associated with the disease. This study aimed to develop an intelligent system based on machine learning (ML) models for frontline clinicians to effectively triage high-risk patients and prioritize who needs mechanical intubation (MI). Material...
متن کاملA segmentation method and classification of diagnosis for thyroid nodules
Heterogeneous features of thyroid nodules in ultrasound images is very difficult task when radiologists and physicians manually draw a complete shape of nodule, size and shape, image or distinguish what type of nodule is exist. Segmentation and classification is important methods for medical image processing. Ultrasound imaging is the best way to prediction of which type of thyroid is there. In...
متن کاملA Computer Aided Pulmonary Nodule Detection System Using Multiple Massive Training SVMs
A computer aided pulmonary nodule detection system for chest radiography is proposed. The system consists of three models, viz., lung segmentation, lung nodule candidates detection and false positive reduction. Several innovations are offered in this system. The first one is that the detection of potential lung nodule candidates is conceived as a filtering process that searches for any region w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012